Chapter (2): Beam Analysis

2.1 Loading on Beams:

2.2 Loading Types:

The loading on beam can be categorized to (Figure 2-1):

- Concentrated Load
 - o Concentrated Force
 - o Concentrated Moment
- Distributed Load
 - o Uniformly Distributed Load (UDL)
 - o Linearly Varying Distributed Load (LVDU)

Figure 2-1: Loading types on beams

2.3 Support Types:

Supports on beams transfer the loads to the following structural member (usually a column) Three major types (Figure 2-2):

- Roller → Vertical reaction only
- Hinge → Vertical and horizontal reaction
- Fixed \rightarrow Vertical and horizontal reaction + a bending moment

Figure 2-2: Beam reaction types

Figure 2-3: Beam reaction types (Continued)

2.4 Beam Types:

Beams can be divided into (Figure 2-4):

- Statically determinate beams:
 - Simply supported beams
 - One-sided over-hanging beam
 - Two-sided over-hanging beam
 - Cantilever beam

- Statically indeterminate beams:
 - Continuous beam
 - End-supported cantilever
 - Fixed at both ends

Figure 2-4: Beam types

2.5 Beam Reactions:

- Reactions on beams are developed due to the applications of the various loads on the beam.
- The reactions can be calculated (determinate beams only) by applying the three equations of equilibrium after drawing the free body diagram of the beam.
- The three equations of equilibrium are:

$$\sum F_x = 0$$

$$\sum F_y = 0$$

$$\sum M = 0$$
(2-1)

Figure 2-5: Beam reaction types

2.6 Sign Convention:

The positive sign convention used throughout the course is summarized in Figure 2-6. The positive x-direction is taken to the right, the positive y-direction is taken upward, and the positive moment is taken in the counter-clockwise direction.

Figure 2-6:The positive sign convention for forces and moment

2.7 Examples:

Example (1):

The 450-kg uniform I-beam supports the load shown. Determine the reactions at the supports.

Solution:

From
$$\Sigma F_{\chi} = 0$$
, $A_{\chi} = 0$
 $\Sigma M_{A} = 0: -450(9.81)4 - 220(9.81)(5.6)$
 $+ By(8) = 0$, $By = 3720 \text{ N}$
 $\Sigma F_{y} = 0: A_{y} - 450(9.81) - 220(9.81) + 3720 = 0$
 $Ay = 2850 \text{ N}$

Example (2):

Determine the reactions at A and B for the beam subjected to the uniform load distribution.

Ans.
$$R_A = 1.35 \text{ kN}, R_B = 0.45 \text{ kN}$$

Solution:

Example (3):

5/97 Determine the reactions at A for the cantilever beam subjected to the distributed and concentrated loads. $Ans.~A_x~=~0, A_y~=~8~{\rm kN}, M_A~=~21~{\rm kN\cdot m}$

Solution:

Example (4):

5/100 Calculate the support reactions at A and B for the beam subjected to the two linearly varying load distributions.

Solution:

$$R_1 = 4(4) = 16 \text{ kN}, R_2 = \frac{1}{2}(2)(4) = 4 \text{ kN}$$
 $R_3 = \frac{1}{2}(4)(6) = 12 \text{ kN}, R_4 = 2(6) = 12 \text{ kN}$
 $2 \times M_A = 0 : 16(2) + 4(\frac{2}{3}4) + 12(4 + \frac{1}{3}6) + 12(4 + 3) - 10 R_8 = 0$
 $R_B = 19.87 \text{ kN}$
 $R_A = 24.1 \text{ kN}$

Example (5):

5/94 Determine the reactions at the supports A and B for the beam loaded as shown.

Solution:

2.8 Internal Forces in Beams:

Internal forces were defined as the forces and couples exerted on a portion of the structure by the rest of the structure.

Figure 2-7: Sign convention for axial force, shear force, and bending moment

